jueves, 5 de noviembre de 2009

REACCIONES NUCLEARES


Una reacción nuclear implica cambios de los átomos de uno o dos elementos en uno o mas átomos de otro u otros elementos.
E = m c2
Mediante técnicas muy precisas es posible determinar la masa de un núcleo atómico formado por una cantidad de neutrones ( que llamamos N) y otra cantidad de protones (que llamamos Z), es decir en total por A nucleones (A=N+Z). También se pueden medir la masa de un protón aislado y la de un neutrón aislado. La sorpresa es que la masa del núcleo resulta siempre menor que la suma de las masas de los nucleones que lo constituyen.

Esto parece muy raro. En la vida cotidiana esto sería equivalente por ejemplo a mezclar un kilo de harina con medio kilo de manteca y que la pasta resultante pesara menos que un kilo y medio.

La masa que falta en los núcleos atómicos cuando los formamos juntando todos los nucleones no ha desaparecido, sino que se ha transformado en energía, como lo establece la famosa relación de Einstein " E = mc2 ". Einstein dice, ¡y tiene razón!, que la energía de un cuerpo (E) es igual a su masa (m) multiplicada por la velocidad de la luz (c) al cuadrado. Cuando desaparece una cantidad de masa, aparece una cantidad equivalente de energía. En nuestra desaparición de masa al formar el núcleo, la energía que aparece es llamada energía de unión. Esa energía de unión actúa como un pegamento que une a los nucleones. Si quisiéramos separar (disociar) de vuelta todos los nucleones tendríamos que hacer fuerza a medida que los separamos, es decir tendríamos que hacer trabajo. El trabajo total que haríamos en ese caso sería igual a la energía de unión.

La energía de unión por nucleón, es decir la energía de unión dividida por el número de nucleones (A), nos indica cuánta masa perdió en promedio cada nucleón presente en el núcleo, y nos da idea de cuán "pegados" están los nucleones entre sí. Cuanto más grande es la energía de unión por nucleón, más agarrados están unos a otros y más difícil es separarlos.

No sabemos por qué esto es así, pero sabemos que la energía de unión por nucleón no es igual para todos los elementos: es pequeña para núcleos livianos (cerca del hidrógeno), se hace máxima para núcleos intermedios (cerca del hierro) y se vuelve a achicar para núcleos pesados (plomo, uranio). Esto indica que los núcleos más difíciles de disociar son justamente los núcleos medios, ya que su pérdida de masa por nucleón es la más grande.
Toda transformación de núcleos que conduzca a la formación de núcleos intermedios producirá entonces energía. Por ejemplo, si lográramos partir un núcleo de plomo en dos, los dos núcleos resultantes serían intermedios y en el proceso se liberaría energía. Si lográramos juntar dos núcleos de azufre (livianos), también formaríamos un núcleo intermedio y también obtendríamos energía. En cambio deberíamos gastar mucha energía en producir azufre partiendo un núcleo intermedio o en producir plomo juntando dos núcleos intermedios.

Estas transformaciones que pueden ocurrir en los núcleos de los átomos, y que consisten fundamentalmente en juntar o separar nucleones y/o grupos de nucleones se denominan reacciones nucleares. La energía liberada en las reacciones nucleares es la energía nuclear.

A lo largo de millones y millones de siglos las reacciones nucleares se van produciendo naturalmente en el universo. A medida que se van formando núcleos intermedios es muy difícil que ellos se destruyan por otras reacciones nucleares, ya que es más fácil que ocurra una reacción que produzca energía que otra que necesite energía (como es más fácil bajar una escalera que subirla). Esto explica por qué las estrellas más viejas tienen mucho hierro.

No hay comentarios:

Publicar un comentario