jueves, 5 de noviembre de 2009

QUIMICA NUCLEAR











PRESENTADO POR:

LEIDY VIVIANA PEÑA MONTES







GRADO 1102 JM






PRESENTADO A LOS PROFESORRES:

WILSON SALAZAR MOLINA
LIDA CORTES







I.E.D. SAN FRANCISCO 1 – LACASONA
AREA INFORMATICA Y QUIMICA
BOGOTA D.C.
2006

JUSTIFICACION

Mi trabajo sobre Energía Nuclear intenta convencer a las personas de que no tan sólo se puede utilizar con fines bélicos , sino que también se puede ocupar para el beneficio de la humanidad .
La Segunda Guerra Mundial aceleró los trabajos de investigación nuclear. Norteamericanos y alemanes se esforzaron en conseguir la tan temida bomba atómica. Rusia y más tarde Francia , Inglaterra y China entraron a formar parte del llamado club atómico. Demasiadas manos controlan ya ese temible poder , y si bien son innegables los numerosos beneficios que esta fuerza puede proporcionar en un mundo de paz , no deja de ser un peligro para la humanidad que naciones poco prudentes y serenas controlen una potencia destructora de tal magnitud . Confiamos en que la sensatez de los hombres impedirá un holocausto que destruya nuestro planeta. La mayoría de la gente piensa que la energía nuclear solo sirve para fabricar bombas y demás armas , pero esto no es así ya que a la energía nuclear, también se le han dado aplicaciones benéficas en pro de la humanidad para mejorar su calidad de vida.
El gran poder de la energía nuclear debe ser manejado con prudencia y si se utiliza sin cautela su gran poder destructor se volcaría en contra de nosotros provocando un holocausto en el que la destrucción y la desgracia terminarían con la raza humana y con todo lo que le llevó miles de años en construir todo esto por no saber utilizar con responsabilidad uno de los recursos que brinda la naturaleza.
La energía nuclear es uno de los temas que está causando mas polémica en los tiempos actuales , ya que a todo el mundo le concierne y puesto que es una fuerza destructora capaz de acabar con todo el mundo , con lo cual causa una gran preocupación y un gran interés entre la población.
En el mundo mueren cada año miles de personas con producto el hambre, por lo tanto , cada vez existe mayor preocupación por procurar un adecuado almacenamiento y manutención de los alimentos.
Las radiaciones son utilizadas en muchos países para aumentar el periodo de muchos alimentos. Es importante señalar, que la técnica de irradiación no genera efectos secundarios en la salud humana, siendo capaz de reducir en forma considerable el número de organismos y microorganismos patógenos presentes en variados alimentos de consumo masivo.
La irradiación de alimentos es aplicada en Chile en una planta de irradiación multipropósito ubicada en el Centro de Estudios Nucleares Lo Aguirre con una demanda que obliga a su funcionamiento ininterrumpido los 365 días del año.

QUÍMICA NUCLEAR

Química nuclear es la que se ocupa del estudio de las transmutaciones y transformaciones de los núcleos atómicos, del mismo modo que la Química molecular atiende al estudio de las moléculas.

Transformaciones nucleares

Las transformaciones nucleares se pueden producir de una manera espontánea, mediante emisión de radiaciones a o /3, verificándose un desplazamiento de dos lugares hacia la izquierda en el sistema periódico en el primer caso (emisión a), y de uno a la derecha en el segundo (emisión a), según la ley de corrimiento de Frederick Soddy. La captura por el núcleo de un electrón de las capas electrónicas K, L, M..., da lugar a la conversión de un protón en neutrón, lo que significa también un desplazamiento hacia la izquierda en el sistema periódico. La más frecuente es la captura K, proceso inverso a la creación K o incorporación de una partícula /3 a la K inmediata al núcleo. En un sentido amplio, a la Química nuclear le corresponde el estudio de las transformaciones radiactivas espontáneas, radioelementos naturales, elementos transuránidos, y efectos y separaciones isotópicos. También incluye el estudio de una serie de notables aplicaciones geoquímicas, geológicas y astrofísicas, acciones químicas de las radiaciones ionizantes, efectos biológicos de las radiaciones, fenómenos de fluorescencia y coloración inducidos, indicadores radiactivos, cambios isotópicos, así como aplicaciones analíticas, electroquímicas, bioquímicas y fisiológicas, técnicas e industriales, etc. Es de gran interés un aspecto de la Química nuclear que se refiere al estudio de las reacciones en que se producen elementos nuevos. Así, de la colisión de una partícula alfa (a) con un núcleo de nitrógeno, hay la posibilidad de dos procesos que dejan libre un protón: (1) ZN+ZHe -~ 13C+ZH+iH (2) ZN +Z He 180 + 111-1
En (1) la desintegración se realiza sin que la partícula alma quede ligada definitivamente; en (2) se efectúa la captura de la partícula alfa y queda suelto un protón. En estas ecuaciones, los índices superiores representan las masas nucleares; y los inferiores, las cargas nucleares de las distintas partículas; además, la suma de los índices superiores y la de los índices inferiores de cada miembro de estas ecuaciones han de ser iguales.

La desintegración del aluminio también se verifica con producción de protones:I7A1+ZHe _> 30Si+lHEl neutrón se produce bombardeando con partículas a el berilio: 49Be+ZHe --> I2C+In Estas transmutaciones, originadas por partículas a, producen núcleos estables; sin embargo, la mayoría de los elementos dan isótopos inestables al ser bombardeados por neutrones que han sido retardados, mediante su paso a través de agua o de parafina. La Química nuclear está estrechamente relacionada con la Física nuclear, pero con métodos y problemas propios.

Rutherford y él se dieron cuenta de que el comportamiento anómalo de elementos radioactivos era debido al hecho de que se transformaban en otros elementos y que producían radiaciones alfa, beta y gamma. En 1903, con Sir William Ramsay, Soddy verificó que la desintegración del radio producía helio.

Desde 1904 a 1914, fue profesor en la Universidad de Glasgow y fue allí donde mostró que el uranio se transformaba en radio. Fue ahí también donde demostró que los elementos radioactivos pueden tener más de un peso atómico, a pesar de que sus propiedades químicas sean idénticas; esto le llevó al concepto de isótopo. Soddy demostró más tarde que también los elementos químicos no radioactivos pueden tener múltiples isótopos. Demostró además que un átomo puede moverse hacia abajo dos lugares en su peso atómico emitiendo rayos alfa y uno hacia arriba emitiendo rayos beta. Esto supuso un paso fundamental en el conocimiento de la relación entre las familias de elementos radioactivos.

Estas investigaciones permitieron el descubrimiento del elemento radiactivo llamado protactinio, que realizaron independientemente Soddy en Inglaterra y Otto Hann y Lise Meitner en Alemania.

En 1921 fue galardonado con el premio Nobel de Química por sus notables contribuciones al conocimiento de la química radiactiva y las investigaciones sobre la existencia y naturaleza de los isótopos..

La Química Nuclear se dedica a los cambios naturales y artificiales en los núcleos de los átomos y a las reacciones químicas de las sustancias radiactivas. La radiactividad natural es el ejemplo mas conocido de la química nuclear. Dentro de esta se consideran los efectos de las emisiones radiactivas (alfa, beta, y gamma) sobre las sustancias, incluyendo a los seres vivos .

El uso cada día mas generalizado de los reactores nucleares para la producción de electricidad hace de la química nuclear una ciencia importante para todo ciudadano.

TIPOS DE EMISIONES


Los núcleos atómicos de una sustancia radiactiva no son estables y se transmutan espontáneamente en otros núcleos emitiendo partículas alfa, beta y gamma.

Las partículas alfa son átomos de He doblemente ionizados, es decir, que han perdido sus dos electrones. Por tanto, tienen dos neutrones y dos protones. Es la radiación característica de isótopos de número atómico elevado, tales como los del uranio, torio, radio, plutonio. Dada la elevada masa de estas partículas y a que se emiten a gran velocidad por los núcleos (su velocidad es del orden de 107m/s), al chocar con la materia pierden gradualmente su energía ionizando los átomos y se frenan muy rápidamente, por lo que quedan detenidas con tan sólo unos cm de aire o unas milésimas de mm de agua. En su interacción con el cuerpo humano no son capaces de atravesar la piel. Así pues, tienen poco poder de penetración siendo absorbidos totalmente por una lámina de aluminio de 0.1 mm de espesor o una simple hoja de papel.

Las partículas beta son electrones emitidos a grandes velocidades próximas a la de la luz. Debido a la menor masa que la radiación alfa, tienen más poder de penetración que las partículas alfa siendo absorbidas por una lámina de aluminio de 0.5 mm de espesor y quedan frenadas en algunos m de aire, o por 1 cm de agua. En el cuerpo humano, pueden llegar a traspasar la piel, pero no sobrepasan el tejido subcutáneo. Los positrones son partículas con masa despreciable y carga equivalente a la de un protón.
Las partículas gamma son radiaciones electromagnéticas de la misma naturaleza que los rayos X pero de menor longitud de onda. Su poder de penetración es muy elevado frente al de las partículas alfa o beta, pudiendo atravesar el cuerpo humano. Quedan frenadas con espesores de 1 m de hormigón o unos pocos cm de plomo, por lo que cuando se utilizan fuentes radiactivas que emiten este tipo de radiación, hay que utilizar blindajes adecuados.

REACCIONES NUCLEARES


Una reacción nuclear implica cambios de los átomos de uno o dos elementos en uno o mas átomos de otro u otros elementos.
E = m c2
Mediante técnicas muy precisas es posible determinar la masa de un núcleo atómico formado por una cantidad de neutrones ( que llamamos N) y otra cantidad de protones (que llamamos Z), es decir en total por A nucleones (A=N+Z). También se pueden medir la masa de un protón aislado y la de un neutrón aislado. La sorpresa es que la masa del núcleo resulta siempre menor que la suma de las masas de los nucleones que lo constituyen.

Esto parece muy raro. En la vida cotidiana esto sería equivalente por ejemplo a mezclar un kilo de harina con medio kilo de manteca y que la pasta resultante pesara menos que un kilo y medio.

La masa que falta en los núcleos atómicos cuando los formamos juntando todos los nucleones no ha desaparecido, sino que se ha transformado en energía, como lo establece la famosa relación de Einstein " E = mc2 ". Einstein dice, ¡y tiene razón!, que la energía de un cuerpo (E) es igual a su masa (m) multiplicada por la velocidad de la luz (c) al cuadrado. Cuando desaparece una cantidad de masa, aparece una cantidad equivalente de energía. En nuestra desaparición de masa al formar el núcleo, la energía que aparece es llamada energía de unión. Esa energía de unión actúa como un pegamento que une a los nucleones. Si quisiéramos separar (disociar) de vuelta todos los nucleones tendríamos que hacer fuerza a medida que los separamos, es decir tendríamos que hacer trabajo. El trabajo total que haríamos en ese caso sería igual a la energía de unión.

La energía de unión por nucleón, es decir la energía de unión dividida por el número de nucleones (A), nos indica cuánta masa perdió en promedio cada nucleón presente en el núcleo, y nos da idea de cuán "pegados" están los nucleones entre sí. Cuanto más grande es la energía de unión por nucleón, más agarrados están unos a otros y más difícil es separarlos.

No sabemos por qué esto es así, pero sabemos que la energía de unión por nucleón no es igual para todos los elementos: es pequeña para núcleos livianos (cerca del hidrógeno), se hace máxima para núcleos intermedios (cerca del hierro) y se vuelve a achicar para núcleos pesados (plomo, uranio). Esto indica que los núcleos más difíciles de disociar son justamente los núcleos medios, ya que su pérdida de masa por nucleón es la más grande.
Toda transformación de núcleos que conduzca a la formación de núcleos intermedios producirá entonces energía. Por ejemplo, si lográramos partir un núcleo de plomo en dos, los dos núcleos resultantes serían intermedios y en el proceso se liberaría energía. Si lográramos juntar dos núcleos de azufre (livianos), también formaríamos un núcleo intermedio y también obtendríamos energía. En cambio deberíamos gastar mucha energía en producir azufre partiendo un núcleo intermedio o en producir plomo juntando dos núcleos intermedios.

Estas transformaciones que pueden ocurrir en los núcleos de los átomos, y que consisten fundamentalmente en juntar o separar nucleones y/o grupos de nucleones se denominan reacciones nucleares. La energía liberada en las reacciones nucleares es la energía nuclear.

A lo largo de millones y millones de siglos las reacciones nucleares se van produciendo naturalmente en el universo. A medida que se van formando núcleos intermedios es muy difícil que ellos se destruyan por otras reacciones nucleares, ya que es más fácil que ocurra una reacción que produzca energía que otra que necesite energía (como es más fácil bajar una escalera que subirla). Esto explica por qué las estrellas más viejas tienen mucho hierro.
METODOS PARA DETECTAR RADIACIÓN

Puesto que las emisiones de las sustancias radiactivas son invisibles, se han desarrollado diversos métodos indirectos para detectarlas. Se describirán cuatro de esos métodos. Todos ellos se basan en el hecho que en los átomos y moléculas afectadas por las radiaciones, ciertos electrones se desplazan a niveles energéticos mas altos.

Métodos Fotográficos y Método Fluorescente:


Métodos Fotográficos: El papel y la película fotográfica se han usado durante mucho tiempo en la detección de la radiactividad. Las emisiones afectan a la emulsión fotográfica de la misma manera que la luz visible. Despues de la exposición, el papel o película se revelan en la forma usual.

Método Fluorescente: Muchas sustancias son capaces de absorber energía radiante de longitud de onda corta (por ejemplo, rayos gamma, X, y ultravioleta) o energía cinética departiculas de alta velocidad (alfa y beta) y transformarlas en energía radiante de una longitud de onda que esta situada en la región visible por el ojo humano.

Cámaras de Niebla:


Inventada en 1911 por el físico ingles C.T.R. Wilson, permite ver la trayectoria de una radiación ionizante en su paso atravez de un gas. Wilson produjo niebla artificial en el laboratorio saturando u cierto volumen de aire con vapor de agua y causando el enfriamiento de la humedad por medio de una rápida expansión . Si no están presentes iones, u otra partículas que sirvan como núcleos para condensar la niebla, el aire quedara sobre saturado de humedad. Wilson encontró que al colocar una sustancia radiactiva en el aire sobresaturado de una camara de niebla, de dicha sustancia emanaban líneas delgadas de niebla.

Contadores de ionización de gases:





En un contador de ionización de gases una partícula ionizante pasa atravez de un gas entre dos electrodos cargados. Los iones formados en el gas son atraídos por los electrodos y producen pulsaciones en forma de un flojo de corriente.


USOS DE ISÓTOPOS RADIACTIVOS


La primera utilización de los isótopos radiactivos con fines experimentales se realizó en Austria en 1913, justamente diez años despues de la concesión del Premio Nobel a Henry Becquerel y Marie Curie por el descubrimiento de la Radiactividad. Fue concretamente el físico George Charles de Hevery quien utilizó un isótopo de plomo (Pb-210) para estudiar la solubilidad del sulfato y cromato de plomo.
Con el invento del ciclotrón a principios de la década de los treinta y el posterior desarrollo de los reactores nucleares en la década de los cincuenta comienza la fabricación industrial de isótopos radiactivos.
Las aplicaciones de los isótopos radiactivos son múltiples y abarcan distintos campos como la industria, medicina e investigación.
En cualquiera de estos campos se utilizan los isótopos para múltiples funciones tales como: Medida de caudales, prospecciones mineras, control de contaminación de aguas, elaboración de radiofármacos, estudios y análisis citológicos, investigación bioquímica, radiodiagnosis, tratamiento del cáncer, y otros muchos usos.
Todas estas aplicaciones son muy beneficiosas para la humanidad, pero como cualquier otra actividad genera residuos que es necesario tratar y gestionar para preservar al hombre y al medio ambiente de las acciones perniciosas de las radiaciones.
Gracias al uso de reactores nucleares hoy, en día es posible obtener importantes cantidades de material radiactivo a bajo costo. Es así como desde finales de los años 40, se produce una expansión en el empleo pacífico de diversos tipos de Isótopos Radiactivos en diversas áreas del quehacer científico y productivo del hombre.
Las reacciones químicas tradicionales ocurren como resultado de la interacción entre la valencia de electrones alrededor del núcleo del átomo. En 1896, Henri Becquerel, expandió el campo de la química para incluir los cambios nucleares cuando descubrió que el uranio emitía radiación. Poco después del descubrimiento de Becquerel, Marie Sklodowska Curie empezó a estudiar la radioactividad y completó en gran medida el primer trabajo sobre cambios nucleares. Curie descubrió que la radiación era proporcional a la cantidad de elementos radioactivos presentes, y propuso que la radiación era una propiedad de los átomos (al contrario a una propiedad química de un compuesto). Marie Curie fue la primera mujer en ganar el Premio Nobel y la primera persona en ganar dos (el primero, compartido con su esposo Pierre y con Becquerel por descubrir la radioactividad; y el segundo por descubrir los elementos radioactivos radio y polonio).
Radiación y Reacciones NuclearesEn 1902, Frederick Soddy propuso la teoría que 'la radioactividad es el resultado de un cambio natural de un isotopo de un elemento hacia un isotopo de un elemento diferente.' Las reacciones nucleares incluyen cambios en las partículas del núcleo de un átomo y por consiguiente causan un cambio en el átomo mismo. Todos los elementos más pesados que el bismuto (Bi) (y algunos más livianos) exiben una radioactividad natural y por consiguiente pueden 'decaer en' hacia elementos más livianos. Al contrario que las reacciones químicas normales que forman moléculas, las reacciones nucleares resultan en la transmutación de un elemento en un isotopo diferente o en un elemento diferente (recuerde que el número de protones de un átomo define el elemento, por lo tanto un cambio de un protón resulta en un cambio de un átomo).



Recurso que explica los fundamentos de la química nuclear. Definiciones preliminares. El núcleo atómico.

La estabilidad de los núcleos atómicos. Radiactividad. Series radiactivas. Velocidad de desintegración. Efectos biológicos de la radiactividad. Nucleosíntesis. Fusión nuclear.

La naturaleza de las reacciones nucleares. Radiactividad

Recordemos que los núcleos quedan definidos mediante los números atómico (Z) y másico (A). El número atómico se refiere al número de protones mientras que el número másico es igual a la suma del número de protones más el número de neutrones, es decir, es igual al número total de nucleones. Con excepción del hidrógeno (11H), todos los núcleos contienen dos tipos de partículas fundamentales llamadas nucleones: los protones y los neutrones.

Los isótopos son núcleos con igual Z (corresponden a un mismo elemento) pero con diferente número másico. Por ejemplo, el uranio presenta tres isótopos en la Naturaleza con 233, 235 y 238 nucleones. Los mismos son simbolizados como 23392U, 23592U y 23892U, obviamente, todos poseen 92 protones. El superíndice es el número de masa y el subíndice es el número atómico. Especies como 147N y 136C se denominan isótonos ya que poseen igual número de neutrones (N) y diferente de protones.

Los diversos isótopos tienen diferente abundancia natural. Por ejemplo, el 99,3 % del uranio natural es uranio-238, el 0,7% es uranio-235 y sólo hay trazas de uranio-233. Los distintos núcleos también tienen diferente estabilidad. De hecho, las propiedades nucleares de un átomo dependen del número de protones y neutrones que hay en su núcleo. Recordemos que se aplica el término núclido a un núcleo con un número específico de protones y neutrones.

Algunos núcleos son inestables y emiten partículas y/o radiación electromagnética de manera espontánea, fenómeno al que se llama radiactividad. Los núcleos que son radiactivos se llaman radionúclidos, y los átomos que contienen estos núcleos se conocen como radioisótopos. Todos los elementos que tienen número atómico mayor de 83 son radiactivos. Por ejemplo, el isótopo del polonio, el polonio-210 (21084Po), decae de modo espontáneo a 20682Pb y emite una partícula a.

Otro tipo de radiactividad, conocida como transmutación nuclear, se produce al bombardear el núcleo con neutrones, protones y otros núcleos. La conversión de 147N a 166C y 11H es un ejemplo de transmutación nuclear, que se produce cuando el isótopo de nitrógeno captura un neutrón (del Sol). Este tipo de transmutación suele suceder en el espacio, pero también se puede lograr por medios artificiales.